Nonlinear Volterra integral equations with positive definite kernels

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COLLOCATION METHOD FOR FREDHOLM-VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY KERNELS

In this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎Fredholm-Volterra integral equations (FVIEs) are smooth‎.

متن کامل

collocation method for fredholm-volterra integral equations with weakly kernels

in this paper it is shown that the use of‎ ‎uniform meshes leads to optimal convergence rates provided that‎ ‎the analytical solutions of a particular class of‎ ‎fredholm-volterra integral equations (fvies) are smooth‎.

متن کامل

Qualitative Properties of Nonlinear Volterra Integral Equations

In this article, the contraction mapping principle and Liapunov’s method are used to study qualitative properties of nonlinear Volterra equations of the form x(t) = a(t)− ∫ t 0 C(t, s)g(s, x(s)) ds, t ≥ 0. In particular, the existence of bounded solutions and solutions with various L properties are studied under suitable conditions on the functions involved with this equation.

متن کامل

Some Problems in Nonlinear Volterra Integral Equations

Upper and lower bounds for the norm of solutions of systems of first order differential equations as well as theorems on global existence and boundedness and other useful results have recently been obtained by comparing solutions of the given system with those of a related (single) first order differential equation. This technique, which is essentially due to Conti [5] and Wintner [9], has been...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0370081-8